Variational principles for symmetric bilinear forms

نویسندگان

  • Jeffrey Danciger
  • Stephan Ramon Garcia
  • Mihai Putinar
چکیده

Every compact symmetric bilinear form B on a complex Hilbert space produces, via an antilinear representing operator, a real spectrum consisting of a sequence decreasing to zero. We show that the most natural analog of Courant’s minimax principle for B detects only the evenly indexed eigenvalues in this spectrum. We explain this phenomenon, analyze the extremal objects, and apply this general framework to the Friedrichs operator of a planar domain and to Toeplitz operators and their compressions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fermionic Novikov Algebras Admitting Invariant Non-degenerate Symmetric Bilinear Forms Are Novikov Algebras

Gelfand and Dikii gave a bosonic formal variational calculus in [5, 6] and Xu gave a fermionic formal variational calculus in [13]. Combining the bosonic theory of Gelfand-Dikii and the fermionic theory, Xu gave in [14] a formal variational calculus of super-variables. Fermionic Novikov algebras are related to the Hamiltonian super-operator in terms of this theory. A fermionic Novikov algebra i...

متن کامل

Witt rings of quadratically presentable fields

This paper introduces an approach to the axiomatic theory of quadratic forms based on {tmem{presentable}} partially ordered sets, that is partially ordered sets subject to additional conditions which amount to a strong form of local presentability. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of {tmem{quadratically p...

متن کامل

Loop Algebras and Bi-integrable Couplings∗

A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations. The variational identities under non-degenerate, symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings. A special case of the s...

متن کامل

Symmetric Powers of Symmetric Bilinear Forms

We study symmetric powers of classes of symmetric bilinear forms in the Witt-Grothendieck ring of a field of characteristic not equal to 2, and derive their basic properties and compute their classical invariants. We relate these to earlier results on exterior powers of such forms. 1991 AMS Subject Classification: 11E04, 11E81

متن کامل

On Symmetric Algorithms for Bilinear Forms over Finite Fields

In this paper we study the computation of symmetric systems of bilinear forms over finite fields via symmetric bilinear algorithms. We show that, in general, the symmetric complexity of a system is upper bounded by a constant multiple of the bilinear complexity; we characterize symmetric algorithms in terms of the cosets of a specific cyclic code, and we show that the problem of finding an opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009